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Multiplicity Result of Periodic Solutions for a
Class of Damped Vibration Problems
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Abstract: A class of damped vibration problems (1) is studied by establishing a proper variational setting under certain conditions. A
multiplicity result of periodic solutions of the damped vibration problems is obtained. The results presented in this paper imprave and
extend some recent results of references [ 1] and references [2].
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1 Introduction and Preliminaries

Consider the following damped vibration problems :

{ii(t) + (q(e) Iy +B) @(t) + VF(t,u(t)) = A(t)u(e) —%q(t)Bu(t),a. e.t € [0,T], (1)

u (0) —u(T) =ua(t) —a(T) = 0.
r
Where T >0, ¢ e L'(0,T;R) with j q(t) dt =0, A(t) = [a;(¢)] is a symmetric N x N matrix-valued
0

function defined in [0,T] witha; € L”([0,T]) for alli,j = 1,2, ---,N and there exists a positive constant @ such
that A(1)¢ - £ =6 |g]* forallé e R'anda.e. t € [0,T] ,B = [ b;] is an antisymmetry N x N constant matrix,
and F:[0,T] x R — R satisfies the following assumption :

( %) F(t,x) is measurable in ¢ for every x € R"and continuously differentiable in x fora. e. t € [0,7T] ,and
there existp > 2 anda e L'(0,T;R") such that

| VF(t,x) [Sa(t) x| (2)

For allx € R'anda.e. t € [0,T] .

For when B is a zero matrix, the damped vibration problems (1) were studied in [ 1] ,and an existence theo-
rem and three multiplicity theorems of periodic solutions were given. For when ¢(t) =0 and A(t) is a zero matrix,
Fengjuan Meng and Fubao Zhang got some sufficient conditions for the existence for periodic solutions of system
(1) in [2] by using the Minimax Theorem.

In the present paper, our main purpose is to study the existence of variational constructions for system(1) ,and
as applications, we consider the multiplicity of periodic orbits for the system (1) via some critical point theorems.

This paper is organized as follows. In the end of this section we collect some critical point theorems which will

be applied to our functional. We discuss a variational setting for system (1) in section 2. Our main results and proof
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will be given in the last section.

In order to state the critical point theorem which will be used to prove our main result, we need the following
notions. Let X and Y be Banach spaces with X being separable and reflexive,and set £ = X @ Y .LetS C X" be a
dense subset. For each s e S there is a semi-norm on K defined by

p:E—R,p(u) = |s(x) |+ |ly] foru =x+y e XDY.

We denote by T'; the topology on E induced by semi-norm family {p } ,and let w and w " denote the weak-topol-
ogy and weak " -topology , respectively.

For a functional @ e C'(E,R) we write @, = {4 < E.®(u) = at - Recall that @' is said to be weak
sequentially continuous if for any u, — w in E one has IAHE & (u,)v = & (u)vfor eachv € E Ji.e. @ :(E,w) —
(E”" ,w") is sequentially continuous. For ¢ € R we say that @ satisfies the (C), condition if any sequence {u,| C E
contains a convergent subsequence ,and such that @(u,) —cand (1 + | u, | YO (u,) —0ask — oo.

Suppose that

(1) foranyc € R, @, is T, -closed, and @ : (P, ,T;) — (E* ," ) is continuous;

(II) there existp > O such that k: = inf @( aBp N Y > 0 ,where Bp ={ueE:|ul| <plt;

(III) there exist a finite dimensional subspace ¥, C Y and R > p such that ¢: = sup ®(E,) <oo and
sup @(EN\S,) < inf @(B, NY) ,where E,: = X@P Y, ,and S, = {u e E,: ||u| <R}

Theorem 17 % Assume that @ is even and (I) — (1II) are satisfied. Then @& has at least m = dimY, pairs of
critical points with critical values less than or equal to ¢ provided @ satisfies the (C), condition for allc¢ € [ k,¢] .

In our applications we take S = X" ,so that T is the product topology on E = X @ Y given by the weak topology
on X and the strong topology on Y . Moreover,,we need the following lemma which can be found in [5].

Lemma 1 Suppose @ e C'(E,R) be the norm
1
®(u) =7( Ny ll> = [[«a)|?) —W(u) foru =x+y e E=XPY,

such that:

1) ¥ e C'(E,R) is bounded from below

2) ¥. (E,w) — R is sequentially lower semicontinuous, that is, v, — u in (E,w) implies ¥(u) <
lin}(inf Y(u,) ;

3) ¥ . (E,w) — (E" ,w") is sequentially continuous;

4) v:E—>R,v(u) = ||u|?isC andv :(E,w) — (E* ,w") is sequentially continuous.

Then @ satisfies (1).

2 The Variational Principles

Let us have H, = {u:[0,T] — R".uis absolutely continuous, u(0) = u(z) andi e L’(0,T;R") } with the
inner product

(uvy, = f:(uu),v(z))dt + j:(u(t),i)(t))dt

for any u,v e Hj ,where (-, +) denote the usual inner product in R" . The corresponding norm is defined by

T T L
2
lullo = (f luCo) Pde+ [ JaCo) [do)
0 0
foru e H) .Then, obviously, Hj} is a Hilbert space.

In the paper,we always assume Q(1¢) = f q(s)ds.
0

Set lull = (j:eW”(Au)u(t) cu(e))de + j:ew la(e) [Pdo)”

foru e H) . Clearly,the norm | - || is equivalent to the usual one |- || on Hj . Denote by ( -, - the inner product

0
corresponding to on Hy . Tt is well known that Hy is compactly embedded in C(0,T;R") (for example, see Prop-

osition 1.2 in [6]).
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Defined the functional I on H} by

1) = [T E Ja) |+ 2B i) + SR w(0) = Flru() Tdr.

Then we have the following facts.

Lemma 2! The functional / is continuously differentiable on H}, .

Lemma 3" Ifu e H is a solution of the Euler equation I’(u) = O ,then u is a solution of problem (1).
Moreover, we need more preliminaries. We define an operator L: Hy, — H* as follow, for any u e Hj ,which is

given by
r
Lu(v) = f T (Ba,v) + %q(t) (Bu,v) |dt
0

for all v € H ,where H* denotes the dual space of H) . By Riesz representation theorem, we can identify H* with Hj .
Thus, Lu can also be viewed as function belonging to H} such that ( Lu ,v) = Lu(v) for any u,v e H} .
It is easy to check that L is a bounded linear operator on H} . Moreover, L is self-adjoint on H} (see [7]).
Lemma 4" Lis compact on Hj, .

By the antisymmetry of B we see that

T T
{(Lu,u) = J’eom[(BiL,u) +Lq(t)(Bu,u):|dt = J’eom(Bu,u)dt.
0 2 0
T
Define J(u) = J’eomF(t,u(t))dt for any u e Hj . Then I(u) can be rewritten as
0

1) = 20U = L) = J(w) (3)

where I denotes the identify operator. Using the classical spectral theory, we can decompose H} into the orthogonal
sum of invariant subspaces for ( I — L)
H, =H®H ®H,

where H’ = ker(I — L) and H™ , H* are such that,for somey > 0 ,

(I -LDu,uy<—y |ul’ (4)
for every u € H™ ,and

(T =Lyuwy =y [ul]’ (5)
for everyu € H' .

Furthermore, L has only finitely many eigenvalues A, with A, > 1 since L is compact on H} . Hence H™ is finite
dimensional. Notice that ( 7 — L ) is a compact perturbation of the self-adjoint operator I . By the spectral theory of
compact operator, we know that O is not in the essential spectrum of ( I — L ). Hence H’ is a finite dimensional
space too.

By(4), (5) and the boundedness of (/ — L) ,we can define another equivalent norm || - ||

on H), given by

s

L
Tul . = ({U=Lu"u") = (U =-Lyu u ) + (u’u’))?
where u* € H' ,u" e H ,u’ € H withu = v+ u” + u’ . This yields
1
(uw) = —Cla” % = e 2) = J(u)
foru =u'+u +u' e HOH @ H .

Denote by (-, ), the inner products corresponding to || - |, on H; . Then the above argument shows that the
spaces H* |H™ and H° are mutually orthogonal with respect to the inner products (-, -) and (-, - .

Lemmas J':.(H,,w)— ((H,)" ,w") is sequentially continuous under the assumption ( * ) ,that is, u, — u in
H, implies J'(u,) — J' (u) .

Proof let {y,}C H) be any sequence converging to some u weakly. Proposition 1.2 in [ 6] implies that {u, b
converges uniformly to u on [0,7T] . Hence (VF(t,u,(t)),v(t)) — (VF(t,u(t)),v(t))a.e. on [0,T] for
each v e Hj . It follows from assumption ( * ) that

[(VF(t,u) ) [<a(e) w15 [o]—aCe) JTulll' o]

for all v € H) . By the Lebesgue convergence theorem, one has
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T T
feo('>(VF(t,uk) ,v)dtHJ’ CO(VEF(t,u) ) de
0 0
for allv e H) ,that is, J'(u,) — J'(u) . The proof is completed.
3 Main Results

In this section we always assume that ¢ and ¢, stand for different positive constants.

Theorem 2 Assume that F e C'([0,7T] x R",R) satisfies ( * ) and the following conditions
1) F(t,x) is even inx and F(¢,0) = 0 ;

| VF(1.2) = D(1)x]

x|

2) there exists a N x N symmeltric matrix D(t) = [d;(t) ] such that ‘hl‘il = O uniformly

int e [0,T] ,whered;(t) e L”([0,T]) foralli,j =1,2, -+ N
3) there exists § > 0 such that (D(t)x,x) = B8 |x|* fora.e. ¢t € [0,T] and x R" , where B =
2lqle .,

+ S ..
(8 + max esssup |a; (1) e

4) F(t,x) =0,F(t,x) —+ o0 as | x | — o0 uniformly in¢ e [0,7] , where F(i,x) = %(VF(t,x),x) - F(t,x) ;

5) ker (I = L) =0, where ( I — L) defined as in section 2.

Then (1) has at least N pairs T -periodic solutions.

Proof It follows from 5) that H, = H*@ H™ ,where H* , H defined as in section 2. LetE = H, X = H,
Y = H ,d(u) = I(u) and ¥(u) = J(u) . We will show that @ satisfies all hypotheses of Theorem 1.

First, we check that @ satisfies (1).

By Lemma 2 and Lemma 5, we see that ¥(u) e C'(E,R) satisfies 3) of Lemma 1. It is pointed out in [ 6 ]
that ¥ is weakly continuous under the assumption ( * ) ,that is, ¥ satisfies 2) of Lemma 1. Moreover, note that £
is a Hilbert space. Hence 4) of Lemma 1 holds, obviously.

Tt remains to prove that ¥ is bounded from blow. By 2) there exist a constant ¢ > 0 such that
[VF(t,x) = D(0)x|<B-(la]+ o) (6)
fora.e.t € [0,T] and allx € R". Consequently, by (6), 1) and 3) ,one has

T
w(u) = joeWF(t,u)dt

T 1
= j feom(VF(t,su),u)dsdt
0 )

0

= %J':eww(D(t)u,u)dt + f: J’;eom(vF(t,su) — D(t) (su) ,u)dsde

B (" ow o (e B
zzjoe |2t jojoe [ 5 Clsul+e) Ju|Tdsde

T
=f—foeo<”[ lul? = 2¢|u|]de,

which implies that ¥ is bounded from blow. By virtue of lemma 1, @ satisfies (I).

Furthermore, foru e Y ,by (2) we have

— 1 2 T(J(’)
D(u) = ~— |ul|? —je F(t,u)de

2 :
1 2 ’ [0)
=5 lull’ = [ a()e™ |u|rde
0
1 2 ety [
=5 lull’ = fule' [a(od
0
= 2wl e ull”

Since p > 2, there is small p > 0 such that %pz = ¢,p" . Therefore,

K :infrp(aBme)z%2>o (7)
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and hence (1II) holds.
Next, we prove that (IIT) is satisfies under the hypotheses of Theorem 2.
Letting ¥, = R" , one can easily get that ¥, C Y and dimY, = N. In order to obtain the desired conclusion,

it is sufficient to prove that @(u) —-— o as ||u || —wink, = XD Y, .

Let E(t,x) = F(t,x) — f(D(t)x x) and §, = lma)ﬁesﬂsst[lp\a (t) | -Then foru = x +y e E, we see that
_ 1 2 2 0
P(uw) = S Cllyls = I=07%) —je Ft,u)de
0
1 r ~
= XU =Dy,y) =5 I’ j ! (DD u,u)de = [ 0 F(r,u)de
0

= ifTeW”(A(t) Yt — = || x|l —Lfe’“”(y(t)u w)d —fTeW F(e,u)de
) o Y,y 2 ¥ 2 Jy , . B

g 2 1 S+ 6 alo T oY
< el iy h -5 B —Toe”’“ | wll 22 —foe()() F(t,u)de
S ‘ ) 1 &5 +6 . Ty
= 706””" Iyl =5 Il ’ —Toem" Cllxlle + o1z —foe‘)” F(t,u)dt
_ 98 iy » 1 2 (T
<- el Ny lh =g el = [ e FCu) de
. 5 1 T oo N
$—(m1n§§,7}) lwll”, —jnew)F(t,u)dt-
0

It remains to show that

1 ,
T j Y F(i,u)di —0 (8)

as ||u|| — o ink,. Indeed, for anye >0 , by (2) and 2) we know that there exists positive constantc = ¢( &)
such that

|VF(t,x) = D(t)x|<e|x|+c (9
fora.e.t e [O T] and allx € R" . Thus, foru e Ewith ||u]| % O ,we have

e F(t w)de| = ()(')(VF(t su) —sD(t)u,u)dsdt

eltlp

||u||

j j (&lsu|+c)|u|dsde
e”"”L‘

2
(RZ

(& +

(e lulli+ecllulu

IR

which implies that (8) is true provided the arbitrariness of ¢ . Hence, (III) holds.

Finally, it is remained to prove that @ satisfies the ( C), condition for any ¢ € R . We assume that {4, }C E is
any sequence such that

D(u,) —c, 1+ |u,l|. Y& (u,) —0 (10)
as k —> co. Then we claim that {y,} is bounded in £ . Assume by contradiction that || u, || , — o0 as k — oo. Let ¢, =
uy

[ [

If ¢ %0 ,set2 = {t e [0,T]:p(t) % 0} . Then 2 has a positive measure and u,(t) — o for allt e (2.
It follows from 4) and (10) that

. Then | ¢, || , = 1.Without loss of generality, we can assume that ¢, — ¢ in £ and ¢, — ¢ in C(0,T;R") .

c = lkljll[q’(ul.) _;7¢’(uk)uk]

= lim , 0(')[ (VF(t,u,) ,u,) — F(t,u,) ]de

k—o0

liminf ¢®® F(¢, w,)dt —+ oo.
0 ko

This is a contradiction. Therefore the case ¢ # 0 cannot occur, and hence ¢ = 0 . By (9) one has
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1 J’T Q) +
L [ (VF () e ) dt

[0 [

‘%J,Te()u)[(v]:'(t’uk)’(p;) —(D(I)UA,QDJI)]dt

[u, |l . Jo

T
w | [ (D00

1 T . ‘ T .
T feom(g‘ukHc) [ [de + ¢!t (max esssup [ d; (1) |) fo\q;k\ | o) |dt

|| w, 0 I<ij<sN - O<i<
el . .
< Twl. o ll TCe Null o +e) +es el e Il
EAl s

I\

e Il . .
C4[7||u i (e lu ]l +¢) + el lei Il L]
k *

(&
= + —— + X .
= 04(8 || u, || . ” P ” w)

By ||uw, || . o, || ¢l .. — 0 and the arbitrariness of & ,we get that

o

1 " t +
WIOeQU(VF(t,uk),ng)dtHO (11)
ks
as k — oo. Consequently,
3 :
o(1) = (w) @y
e Il
. 1 T o +
= -L)g,,ei) - WJ’OG‘ (VF(t,u,) ¢, )dt
P
= llei % +o(1).
This yields || ¢; || . — O ,similarly, | ¢; |2 — O . This is also a contradiction since || ¢, || . = 1 for any k .

. . . . . 1
Therefore {y,} is bounded in E . Going if necessary to a subsequence, we can assume that u, — u in H; and

| w, —ul , —0.Since

2
lw, —ul

’ ’ 1 ’ t
(@' () = @' (u) sy —u) + 5 [ V() (BCuy = u) uy —u)de
T T
[ e (B =) = wyde s [ (VEGL0) = V() s = w) dr
0 0
T
< (P (w) = @' (w) sy —u) e [ iy — il luy, - uldi
! )
[ O UVEGLu) [+ IVFG) D Ty = uldi
T
< (@'(w) = @' (w) g =) e u—wllL | Clig |+ [a])de

T
ol =l [ eV alo) Clu 7+ Julr)de,

we see that u, — win H), , i. e. @ satisfies the (C), condition for any ¢ € R . Note that 1) implies that @ is even.
Now the conclusion of Theorem 2 follows from Theorem 1. The proof is completed.

Remark 1 Even in the case that g(t) = 0 , and both A(¢) and B are zero matrices, Theorem 2 is new too.
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