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ADH: A Deep Hashing Image Retrieval Method Based on Attention Mechanism

ZHANG Hao', LU Wenxi’
(1. School of Computer and Information Technology, Kunming Metallurgy College, Kunming, Yunnan, China 650061 ;
2. Yuxi Meteorological Observatory, Yuxi Meteorological Bureaw, Yuxi, Yunnan, China 653100)

Abstract: In the field of image nearest-neighbor search, hashing technology has emerged as an efficient data processing method,
demonstrating significant advantages in large-scale multimedia retrieval applications. It improves search efficiency by mapping high-
dimensional data into compact binary codes. However, the effectiveness of hashing coding heavily depends on the similarity assessment
of high-dimensional data. Although deep learning-driven hashing algorithms have made remarkable progress, they still face the problem
of gradually losing image feature information as the layers of Convolutional Neural Networks (CNN) increase. This not only reduces the
accuracy of hashing codes, but also limits their effectiveness in practical applications. To address this challenge, this paper proposes an
innovative deep hashing model—Attention Deep Hashing (ADH). This model subtly integrates the attention mechanism to accurately
locate and enhance the feature regions of the image that are crucial for similarity calculation, while assigning appropriate weights to
different features. This approach effectively alleviates the information degradation issue caused by deep network structures and further
improves the expressive ability of hashing codes. To validate the effectiveness of the ADH model, we conducted extensive training and
testing experiments on the publicly available CIFAR-10 dataset. The experimental results show that compared to traditional deep hashing
methods, the ADH model increases the average precision of retrieval results to 0. 768, demonstrating the key role of the attention
mechanism in optimizing deep hashing encoding. Additionally, the research indicates that the ADH model has good generalization
ability, providing new ideas and technical references for future research on efficient high-dimensional data retrieval.

Key words: deep learning; deep Hashing; attention mechanism; image retrieval; convolutional neural networks
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