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The Certain Banhatti Indices of the Line Graph of V-pantacenic Nanotube
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Abstract: A topological index is a numeric quantity associated with a graph which characterizes the topology of the graph and is invari-
ant under graph automorphism. Topological indices are used as an example in the development of quantitative structure-activity relation-
ships (QSARs) in which the biological activity or other properties of molecules are correlated with their chemical structure. The aim of
this report is to compute the first and second K Banhatti indices of the Line Graphs of V-Pantacenic Nanotubes. We also compute the
first and second K hyper Banhatti indices of the Line Graphs of V-Pantacenic Nanotubes.
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0 Introduction

Chemical graph theory is a branch of graph theory in which a chemical compound is represented by a simple
graph called molecular graph in which vertices are atoms of compound and edges are the atomic bounds. A graph is
connected if there is at least one connection between its vertices. Throughout this paper we take G a connected
graph. If a graph does not contain any loop or multiple edges then it is called a network. Between two vertices u
and v, the distance is the shortest path between them and is denoted by d(u,v) =d (u,v) in graph G. For a ver-
tex v of G the “degree” d, is the number of vertices attached to it. The edge connecting the vertices u and » will be
denoted by uv. Let d (e) denote the degree of an edge e in G, which is defined by d,(e) =d, (u) +d,(v) -2
with e =uv. The degree and valence in chemistry are closely related to each other. We refer to the book'"’ for more
details. Another emerging field is Cheminformatics, which helps to predict biological activities with the relationship
of Structure-property and quantitative structure-activity. Topological indices and Physico-chemical properties are
used in prediction of bioactivity if underlined compounds are used in these studies'” .

The number that describes the topology of a graph is called topological index. In 1947, the first and most stud-
) More details about this index can be found in°~®. In 1975,

ied topological index was introduced by Weiner'™

Milan Randic introduced the Randic index'”".
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1 [9]

Bollobas et al. "® and Amic et a in 1998, working independently defined the generalized Randi¢ index.

[10]

This index was studied by both mathematicians and chemists- . For details about topological indices, we refer

HI-151 The first and second K-Banhatti indices of G are defined as

B1<G) =ILVE%C)[dc(u)+dc<e)] ,
Bz<G> =WE§4(G)[dc<u)Xdc(e>] ,

where ue means that the vertex u and edge e are incident in G. The first and second K-hyper Banhatti indices of G

to

are defined as
HB(6) = 3 1d,(w)+dy(e) ],
HB,(G) =m§<c)[dc(u)xdc(6)]2.

We refer to''* 7! for details about these indices.

The first and second multiplicative K Banhatti indices are defined as''®’

BIL(G) =TT Lds(u) +d(e)],
BIL(G) =11ld(u)di(e)].
The first and second multiplicative K hyper Banhatti indices are defined as

HBII (G) =TI (dg(u) +dg(e))”,

HBIL, (G) =T1(dg(u)dg(e))’.
The line graph L( G) of a graph G is the graph each of whose vertices, representing an edge of G and two of its

[18]

vertices are adjacent if their corresponding edges are adjacent in G.

Lemma 1 Let G be a graph of order p and size q. Then the line graph L( G) of G is a graph of order p and
size %M, (G) —q.

In this report we compute Banhatti indices of line graph of V-Pantacenic nanotube''”!. The graph of V-Panta-

cenic nanotube is given in figure 1 and the line graph of V-Pantacenic nanotube is given in figure 2.
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Figure 1 The V-Pantacenic nanotube F[2,5] Figure 2 The line graph of V-Pantacenic nanotube F[2,5]

1 Computational Results

In this section we will give our main results.
Theorem 1 Let G=L(F[p, q]) be a line graph of V-Pantacenic nanotube. Then
B, (G) =1 320pqg —568p,
B,(G) =3 168pqg —1 652p,
HB,(G) =13 200pq —6 936p,
HB,(G) =76 032pq —49 132p.
Proof The line graph of V-Pantancenic Nanotubes is shown in figure 2. It can be observed from the figure 2

and lemma 1 that
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[V(G) | =33pg -5p,

There are two types of vertices based on the degree, 1. e

Vi(6) ={veV(6):d, =3},
V,(6) ={veV(G):d, =4},
Such that
[V,(G) | =20p,
[V,(6) | =33pq -25p.
Also

|E(G) | =66pq —20p.
We can divide the edge set of the line graph of V-Pantacenic Nanotube into following three classes depending
on the degree of end vertices of each edge:
E3(G) ={e=wek(G);d, =3,d, =3},
E4(G) ={e=wek(G);d, =3,d, =4},
and E(G)={e=wek(G);d, =4,d, =4}
Now
[E5,(6) [ =18p,
[E5.4,(6) | =20p,
|E (4.4,(G) | =66pq —58p.
The detailed edge set dividing can refer to Table 1.
Tab. 1 The edge set dividing of L(F[p, q])

dig (u),d =eeE(G) dcfe) Numbers of edges
(3, 3) 4 18p
(3, 4) 5 20p
(4, 4) 6 66pq —58p

1) From the definition of first K Banhatti index
BI(6) = 3 o) +d(e)] = T [(do(w) +de(e)) +(do(0) +do(e) ]+ T [(delw) +d(e)) +

ek(6) 13,3}

(do(v) +dg(e)) ] +ME§M[(dc(u) +dg(e)) + (dg(v) +dg(e)) ] =18p[(3+4) +(3+4)] +20[ (3 +5) + (4 +

5)] +(66pg —58p)[ (4+6) +(4+6) ] =1 320pqg —563p.
2) From the definition of second K Banhatti index

B,(G) =MZ [dg(u) xdg(e) ] =ueegm‘[(d0<u)dc<e)) +(dg(v)dg(e)) ] +ueegw‘\[(dc(u)dc(e)) +(d;(v)

E(G)

de(e) ]+ 3 T(dp()dy(e)) +(dg(0)d(e))] =120(3 x4) +(3x4)] +20p[ (3 x5) + (4 x5) ] + (66pq -

58p) [ (4x6) +(4x6)] =3 168pg —1 652p.
3) From the definition of first K hyper Banhatti index
HB,(6) 3 [di(u) +dg(e) "= 3 [(de(u) +dg(e))* +(dg(v) +dg(e))* ]+ 3 [(dg(u) +

eckys 3 uee k3 4

de(e))? +(dg(v) +dg(e))’ ]+ 3 [(de(u) +dg(e))’ +(de(v) +dg(e))’] =12p[ (3+4)" + (3 +4)7] +

uee k4 4}
20p[ (3+5)> +(4+5)>] + (66pg —58p)[ (4 +6)> + (4 +6)>] =13 200pg —6 936p.
4) From the definition of second K hyper Banhatti index

HBz(G) = %[dc(u)dc(e)}z = EZ [(dc(u)dc(e))z + (dc(v)dc(e))z] +ueEEZ‘.H}[(dc(u>dc<3))2 +

ueekys 3

(de(v)dg(e))’ ]+ 3 [(dg(u)dg(e))® +(dg(v)de(e))’] =12p[ (3 x4)" + (3 x4)"] +20p[ (3 x5)" +

ueekiy 4y
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(4x5)%] +(66pg —58p) [ (4 x6)* + (4 x6)*] =76 032pq —49 132p.
Theorem 2 Let G=L(F[p,q]) be a line graph of V-Pantacenic nanotube. Then
BII, (G) =72 820 5 920 3 1()2(660a -58p)
BIL(G) =12% x (15)2 x (20)™ x (24) %m0
HBIL (G) =7* x 8" x 9" x 10* =%
HBII, (G) = 12%7 % 15%% 2% x 244(00ra=58p)
Proof 1) From the definition of first multiplicative K Banahatti index

BI[]((;):H[dc(u)"'d(;(e)]:P 11 [de(u) +dg(e)][d;(v) +d;(e)] x I [de(u) +

ue e=uwek 3 e=wek3 4

do(e) [Lde(v) +do(e) I x T [de(u) +de(e) 1Lde(v) +de(e)]=(3 +4) % (3+4) x (3+45)™ x

=wek iy
(4 +5>2()p % (4 +6> (66pq —58p) x (4 +6) (66pq —58p) :72417 x 8201) ><92()1) X 102(661)(17581)).
2) From the definition of second multiplicative K Banahatti index

BHz(G) :lu_e[dc(u)dc<e) :e:lwg‘”{[(d(;(u)dc(e)) X (d(;(v)d(;(e))} Xe:ltvng[(d(;<u)dc(e)) X
(de(v)dg(e)) ] x l_gwl[(dc(u)dc(e)) X (dg(v)dg(e))] =(3x4)" x(3x4)™ x(3x5)™ x(4x

S)ZO/J X (4 X6) (66pq —58p) x (4 ><6) (66pq —58p) — 1224/1 X ( 15>20p x (20)20/) x (24)2(66/1(/758/))'
3) From the definition of first multiplicative K hyper Banahatti index
HBIL(G) =TI[ dg(u) + dg(e)]* =TI [ de(u) +dg(e) PLde(v) + do(e) I'x T [de(u) +

ue e =wek33 e =wek|jy

|

do(e)]* [ dg(v) + dg(e) ] x TI CLdeCu) + dg(e)] Pde(v) +de(e)] =[3 + 41" x[ (3 +

e =weky

4)2}]21))([ (3 + 5)2]21)]) X[ (4 + 5)2}201) X[ (4 + 6)2}(66])(;—5817) X[ (4 + 6)2](661)(1—5817) :748p X840p X940p X

104(661"1 - 58p)

4) From the definition of second multiplicative K hyper Banahatti index

HBHZ<G):1;[<d(;(u>dc(e))2 =e:wll [(d(;(u)dc(e))zX(dc(v)d(;(e))z] X 1_115 [(d(;(u)d(;(e))zx

ek 3 e=wek 34

(de(v)dg(e))’]x T [(de(u)de(e))® x (dg(v)dg(e))*] =[(3x4)* ] x [(3x4)*]™ x[(3x5)"]™ x

e=uekiy 4,

[ (4 XS)Z]ZOP X [ (4 X6>2J(66p(1—58p) X [ (4 X6)2](66pq—5817) =12% 15 % 20" DY (66ps=38p)
2 Conclusion

In this report we computed first K Banahatti index, second K Banahatti index, first K hyper Banahatti index,
second K hyper Banahatti index, first multiplicative K Banahatti index, second multiplicative K Banahatti index,
first multiplicative K hyper Banahatti index and second multiplicative K hyper Banahatti index of the line graph of
V-Pantacenic nanotube. The following figure 3 and figure 4 show the dependence of first K Banahatti index and sec-

ond K Banahatti index on the involved structural parameters p and g.
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Figure3 Plotof first K Banahatti index 3D(left), for p=1 (middle) and for ¢g=1 (right)
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Figure4 Plotofsecond K Banahatti index 3D(left), for p=1 (middle) and for g=1 (right)
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